
Active Learning-based Automatic Tuning and
Prediction of Parallel I/O Performance

Megha Agarwal1∗†, Divyansh Singhvi1∗‡, Preeti Malakar∗§, Suren Byna¶
∗IIT Kanpur, ¶Lawrence Berkeley National Laboratory

†meghaagr@iitk.ac.in, ‡dsinghvi@iitk.ac.in, §pmalakar@iitk.ac.in, ¶sbyna@lbl.gov,

Abstract—Parallel I/O is an indispensable part of scientific
applications. The current stack of parallel I/O contains many
tunable parameters. While changing these parameters can in-
crease I/O performance many-fold, the application developers
usually resort to default values because tuning is a cumbersome
process and requires expertise. We propose two auto-tuning
models, based on active learning that recommend a good set
of parameter values (currently tested with Lustre parameters
and MPI-IO hints) for an application on a given system. These
models use Bayesian optimization to find the values of parameters
by minimizing an objective function. The first model runs the
application to determine these values, whereas, the second model
uses an I/O prediction model for the same. Thus the training
time is significantly reduced in comparison to the first model
(e.g., from 800 seconds to 18 seconds). Also both the models
provide flexibility to focus on improvement of either read or
write performance. To keep the tuning process generic, we have
focused on both read and write performance. We have validated
our models using an I/O benchmark (IOR) and 3 scientific
application I/O kernels (S3D-IO, BT-IO and GenericIO) on two
supercomputers (HPC2010 and Cori). Using the two models, we
achieve an increase in I/O bandwidth of up to 11× over the
default parameters. We got up to 3× improvements for 37 TB
writes, corresponding to 1 billion particles in GenericIO. We
also achieved up to 3.2× higher bandwidth for 4.8 TB of non-
contiguous I/O in BT-IO benchmark.

Index Terms—Parallel I/O, auto-tuning, active learning, per-
formance prediction, machine learning

I. INTRODUCTION

Scientific applications are routinely executed on high per-
formance computing systems. These applications read and
write gigabytes of data [1]. Some applications spend more
than 50% of total execution times in I/O [2]. This not only
causes a huge slowdown for the applications, but may also
lead to wastage of useful compute resources when significant
overlap of compute and I/O is not possible. One of the primary
reasons for I/O being a bottleneck in the execution of scientific
applications is the exponential growth in compute rates as
compared to the I/O bandwidths. However, the MPI-IO layer
of the MPI libraries and parallel file systems help in improving
performance of parallel I/O to some extent. They provide
a multitude of configuration parameters, which may help in
increasing I/O bandwidth significantly, if set properly. Examples
of such parameters are collective I/O buffer size, number of
data aggregators for collective I/O, whether or not to perform
data sieving, Lustre file system stripe size and count, etc.

1Equal contribution.

The values of these various parameters affect the overall I/O
time, and hence the I/O bandwidth. For example, larger the
collective buffer size, lesser may be the number of iterations
required to actually perform the POSIX reads/writes. It is also
known that larger stripe size and stripe count in the Lustre
file system is beneficial. The challenge however, is that the
optimal value of the stripe size and stripe count depends on
the data size, number of nodes and many other factors [3]. It
is well-known that determining the optimal values of all these
parameters to obtain the best I/O performance is difficult for a
user due to the complex (and often unknown) interaction of I/O
stack, network, application I/O patterns and other middleware
related to file systems [4], [5]. An application developer
spends maximum effort on code optimizations, rather than
I/O parameter optimization. Therefore application developers
resort to using default parameters.

Tuning various kinds of parameters also require an in-depth
understanding of the I/O hierarchy, will be more complex in
the future exascale systems. Automatically tuning parameters
of interest has been used in various contexts, including
parallel I/O [5], [6]. This relieves the application developers
from performing parameter sweep experiments to tune the
I/O performance. Auto-tuning hides the complexity of I/O
interactions at various layers from the developer. Various
approaches exist to automatically tune parameters, such as
genetic algorithms, heuristic search etc. However, some of
these approaches can take up to a few hours [4]. We propose
a framework that automatically tunes the I/O parameters and
find a good set of parameters. Our approach requires minimal
human intervention and is independent of the application or the
system. Our framework consists of two models for auto-tuning
and an I/O prediction model.

Our first model, an execution-based auto-tuning model
(ExAct), uses active learning to search better parameter values.
The advantage of using active learning is that the model itself
chooses the parameter values for next run and thus, eliminating
the need of large data sets for training which is difficult to obtain
due to large run-time of application codes. Active learning is
also well-suited in our case due to complex interaction of
system parameters and workload which is difficult to account
in statistical models. We have used Bayesian optimization
for parameter selection as it can handle a large number of
parameters. Our model builds a surrogate function (probability
model) based on past evaluations of the objective function,
which in our case is the I/O bandwidth of the previous runs.

20

2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW)

978-1-7281-6005-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PDSW49588.2019.00007

Our approach achieves good performance in a few iterations
(∼20). It requires no manual effort beyond the initial set-up of
selecting the range for each tunable parameter such as collective
I/O buffer size, Lustre stripe size, etc. Using this model, we
have automated tuning of Lustre and MPI-IO parameters related
to data sieving and collective buffering. This model runs in a
few seconds, however, the training time includes running the
application with the model-selected parameters. We propose
a second model for auto-tuning that also uses active learning,
called prediction-based auto-tuning (PrAct). This model uses
predicted values to determine the best set of parameters instead
of executing the application with the model-selected parameters.
For this, we have also built a performance prediction model
using extreme gradient boosting machine learning algorithm.
This reduces the model runtime by at least 40×.

We evaluated our models using three scientific application
I/O kernels (S3D-IO, BT-IO and GenericIO) and an I/O
benchmark (IOR). We showed performance improvements on
up to 1024 cores on two supercomputers. We have experimented
with different input data sizes, resulting in several terabytes
of output and a maximum improvement of 11× over the
bandwidth with default parameters. Overall, we have achieved
a speedup of 3× across different benchmarks using the ExAct
model. The I/O bandwidths using the parameters from the
ExAct model resulted in 3× improvement for 37 TB writes
in case of GenericIO and 4 TB I/O in case of BT-IO. We ran
only a few time steps for our experiments, however, this gain
is expected to multiply for production runs which are long
running with multiple data write phases.

Our main contributions are as follows. We developed
1) a novel auto-tuning approach based on active learning

that improves both read and write performance.
2) an execution-based auto-tuning of MPI-IO tunable pa-

rameters, that is able to achieve up to 11× speedup.
3) a fast prediction-based auto-tuning that can tune I/O

parameters in 0.5 minutes.
The rest of this paper is organized as follows. We survey

related work in §II. Our approaches are explained in §III and
IV. The experimental setup and evaluations are presented in
§V, followed by concluding remarks in §VI.

II. RELATED WORK

Auto-tuning I/O Parameters: There exists several approaches
to select optimal parameters from a large search space by
using auto-tuning [6], such as genetic algorithms, Bayesian
optimization, gradient descent etc. Many of these have been
applied in various domains of high performance computing
including parameter selection for parallel I/O [3]–[5], [7].
Behzad et al. [3], [5] used a heuristic-based search with a
genetic algorithm to tune I/O performance. The heuristic-based
search has a long run time and could not be applied on a
different configuration than the trained configuration. Howison
et al. studied manually tuning HDF5 applications on Lustre
file systems [8]. It is a cumbersome process to manually tune;
the application developer typically uses the default parameters.
McLay et al. [9] study tuning parallel I/O on a specific system

and suggest that maximizing stripe count has a significant
impact on performance. In contrast to the above approaches,
we propose a method to automatically find a good set of
parameters for I/O in relatively less time using active learning.
Performance Prediction of I/O: There has been a lot of work
on analytically modeling I/O performance. Lee and Katz [10]
developed analytical models of disk arrays to approximate
their utilization, response time, and throughput. Song et al.
[11] proposed an analytical model to predict the cost of read
operations for accessing data. Data organization in different
layouts on the file system is used to predict cost. Barker et al.
[12] used analytical performance models for two applications
to test their performance for new storage system deployment.
With increasing complexity of system software, hardware and
complex layout of files ystems, developing analytical models
is often time-consuming and inaccurate to obtain the expected
prediction accuracy. Therefore, several researchers propose
machine learning (ML) models for modeling I/O performance.

Behzad et al. [5] propose non-linear regression models
for performance prediction, the model being specific to an
application. Herbein et al. [13] use a statistical model, called
surrogate-based modeling to predict the performance of the
I/O operations. Behzad et al. [4] developed a semi-empirical
approach to model the performance of MPI-IO operations.
Isaila et al. [14] combined analytical and ML approaches for
modeling the performance of ROMIO collectives. Xie et al. [15]
developed micro-benchmarks to characterize storage system
write performance, identified important input parameters, and
developed ML-based models. In contrast, we use fast ML
algorithms to predict with reasonably good average prediction
accuracy. We use these predicted values to reduce the runtime
of our active-learning model to tune the I/O parameters.

III. AUTO-TUNING PARALLEL I/O

The best parameterization for parallel I/O is obtained by fine-
tuning several MPI-IO parameters and file system parameters.
It is difficult for users and application developers to fine-tune
the I/O parameters based on their application, data size, file
access patterns and system. This is due to the huge search
space. E.g., in case of Lustre parameters, typical stripe size
can be set between 1 MB – 8 MB and stripe count can be
between 1 – maximum number of object storage targets (OST)
(which can be more than 200 [16]). Thus, the search space with
these two parameters is about 1600 if size is varied by unit
of 1MB. Additionally, there are several MPI-IO parameters,
thereby increasing the search space. Therefore, a feasible and
acceptable solution is to automatically tune the system using
machine learning (ML). Further, we have used active learning
to reduce the sample space associated with ML models. Next,
we describe the various auto-tuning and prediction models we
have used. In this section, we describe the ExAct model that
uses active learning based on the actual execution times for auto
tuning of I/O. We also describe some of the implementation
details for auto tuning. Section IV describes two models – an
I/O bandwidth prediction model (Predict), and an enhanced
auto-tuning model (PrAct) that uses Predict with active learning.

21

Execution-based Auto-tuning (ExAct): Active learning is a
special case of semi-supervised machine learning in which a
learning algorithm is able to interactively query the user (or
some other information source) to obtain the desired outputs
at new data points. The main hypothesis in active learning is
that if a learning algorithm can choose the data it wants to
learn from, it can perform better than traditional methods with
substantially less data for training. Therefore, we are able to
obtain good results by just providing an input configuration. The
input configuration refers to data size (e.g., grid size or number
of particles). Our aim here is to use Bayesian Optimization to
find values of MPI-IO and Lustre [17] parameters that gives
the best performance in terms of I/O bandwidth for a given
data size of the particular application and the underlying file
system. We can state our problem as

x∗ = argmax
x∈X

f(x)

where f(x) represents the objective function to minimize, i.e,
inverse of I/O bandwidth. x can take any value in space of
parameters denoted by X and x∗ denotes the set of values for
tunable parameters which minimizes the function.

The two key problems that auto-tuning models face are [4]:
• finding best set of parameters in optimal time
• feeding those parameters without modifications in code

We have resolved the second problem by inserting the parameter
values obtained from the model through environment variables
at run-time. This avoids application-code modifications and
hence recompilation of whole application. A naı̈ve strategy
to obtain the best set of parameters is to run the application
on a specific system across the entire parameter space with
all possible values and obtain the best performing set [18]
[19]. However, this is not only tedious, but will incur large
computation overhead especially when the search space is
continuous. We can reduce the search space analytically or
improve efficiency by doing random search. However, random
search is unreliable and may not result in the best set or
close to best set every time. Also, in some cases, parameters
selected from random search results in performance degradation.
Due to complex interaction between parameters and run-time,
the above approaches are less desirable. Therefore, we use
Bayesian Optimization(BO) in our work, as described next.
The advantage of BO over random search is that when the
number of parameters to be tuned increases, the latter performs
miserably.

1) Bayesian Optimization: Bayesian Optimization (BO) [20],
[21] selects the set of parameters as an informed decision based
on performance in previous runs whereas random search selects
values randomly, independent of results in the previous trial
runs. BO avoids expensive evaluations of the objective function
by selecting the next set of parameters based on those that
gave good results in the past [22] [23]. Bayesian Optimization
keeps track of previous evaluations by computing P which is
defined below:

P (score|parameters)

In our case ‘score’ is I/O bandwidth. In literature, this model is
named as ‘surrogate’ for objective function and is denoted by
P (y/x). The Bayesian method optimizes this surrogate rather
than the objective function. Figure 1 denotes the steps taken by
Bayesian Optimization in our work. At each step, a decision is

Build “surrogate” model P (y|x)

(1) Find set of parameters based on previous runs

(2) Run application code in objective function with
parameters in (1) to obtain I/O bandwidth

(3) Update the surrogate model incorporating current
performance

M
A

X
E

VA
L

S

Fig. 1: Bayesian Optimization steps

taken by the model in an informed manner. The time spent in
taking this decision for selecting values of parameters for next
run is insignificant as compared to the time taken to run the
application at each step (Step 2 in the figure). The model runs
for MAX EV ALS steps (we ran for 20 iterations). Next, we
discuss some algorithmic details of our model.

2) BO Model Details: Sequential model Bayesian Optimiza-
tion algorithms are formalization of Bayesian Optimization.
[24] As the name suggests, sequential denotes running trials one
after the other, and each time finding parameters by applying
Bayesian reasoning and updating surrogate (as shown in Fig
1). There are five aspects to optimization as discussed in [22];
these are stated below.

• Domain: The domain of values of parameters to be tuned
are the Lustre parameters and MPI-IO hints (see V-A).
Search space of each parameter is stated as range in case
of continuous space and set of values in case of discrete
space. For e.g., search space of stripe count is stated as [1,
Total #OSTs]. One can associate the probability function
with search space associating higher probability to region
where optimal parameters are most likely to be available.
We have assigned uniform function as it is equally likely
to find optimal parameters in the entire range.

• Objective function: It takes the parameter values as input
and outputs the loss or f(x) that we want to minimize.
In our case, the loss is reciprocal of I/O bandwidth of the
application. The objective function runs the application
code to obtain loss and hence is the most expensive part.
The goal of the entire model is to converge in fewer
iterations and to minimize the number of calls to this
function (MAX EV ALS).

• Surrogate model of objective function: It is a probabilistic
model built using previous evaluations. There are various
functions for modeling surrogate like Gaussian Processes
and Random Forest. We have used Tree-structured Parzen
Estimator (TPE) for our purpose. TPE constructs the
model by using Bayes rule. Instead of directly using

22

p(y|x), it uses

p(y|x) = p(x|y)p(y)
p(x)

p(x|y) is the probability of the set of parameter values
given score.

• Selection function: It denotes the criteria by which next
set of parameters values are chosen from the surrogate
function. We used Expected Improvement (EI) criteria.

EIy∗(x) =

∫ y∗

− inf

(y∗ − y)p(y|x)dx

y∗ is a threshold value of the objective function, y is the
actual value of the objective function using parameter set
x. The model objective is to maximize EI with respect
to x.

• History: Each time the algorithm finds a new set of
candidate values of parameters, it evaluates them with
the actual objective function and records the result in a
pair (score, values of parameters). These records form the
history and are used in subsequent runs.

The run-time of ExAct is directly proportional to product
of the number of times the application is run (20 in our case)
and the time taken to run the application. Our approach of
using Bayesian optimization reduces the time to find a feasible
solution. The advantage of using ExAct over existing auto
tuning framework is faster convergence. However, it can still
take up to an hour to run a few iterations of an I/O benchmark
on a few nodes, especially for large data. Therefore, to reduce
the total time taken by ExAct, we first propose a performance
prediction model to predict the I/O bandwidth, and then use that
to further reduce the auto-tuning model runtime. We describe
both in the next section.

IV. I/O PERFORMANCE PREDICTION AND TUNING

In this section, we first describe our performance prediction
model for I/O. Next, we describe our enhanced auto-tuning
model which uses these predictions to output best parameters
within a few seconds.

A. Performance Prediction Model (Predict)

Performance modeling is an important problem in HPC. A
performance model should be able to predict the performance
(e.g. runtime) of an application on a given system. Performance
models are useful for system administrators and developers
alike, in order to correctly estimate the total job runtime.
This is useful to reduce queue wait times, and improve
system throughput. Further, accurate I/O predictions can help
application developers tune the I/O frequency appropriately.

Typically, developers routinely run their application codes
on a system for a long time. They also experiment with
different parameters for various input configurations. Science
users typically archive their runs. We used the data collected
from the ExAct runs, however logs of prior runs can be also
used. We used machine learning algorithms to predict the
I/O performance. Particularly, we have used extreme gradient

boosting (XGB) [25]. They have been shown to give good
predictions for non-linear relationships between the input
parameters [7], as is our case of parallel I/O. The input data
consists of various input configurations (problem sizes, number
of nodes etc.) and input parameters (MPI-IO parameters and
file system parameters). The output is I/O bandwidth. Details
of the hyperparameters of XGB are presented in Section V-A.
The train-test accuracy of the model is discussed in Section
V-D2.

B. Prediction-based Auto-tuning (PrAct)

In this section, we describe our modified auto-tuning
model. As mentioned earlier, computing objective function
is a bottleneck of ExAct model. We propose a model to
overcome this shortcoming. This model utilizes the Predict
model (see §IV-A) as the objective function. Instead of running
the application, we incorporate the Predict model values in Step
(2) of Figure 1. This significantly reduces the execution time
of our active learning model-based auto-tuning to determine
the best set of I/O parameters. The reduction in model time
is at least 40×, as compared to ExAct, thereby significantly
improving the training time.

V. EXPERIMENTS AND RESULTS

In this section, we first describe our implementation details,
followed by details of the four I/O benchmarks and application
I/O kernels that we have used in this work. We next describe
the two supercomputers on which we ran our experiments,
followed by demonstration of our model results.

A. Implementation

The various parallel I/O parameters that we tune are
MPI-IO parameters such as romio ds read, romio ds write,
romio cb read, romio cb write, cb buffer size, cb nodes and
Lustre file system parameters such as the stripe count and the
stripe size. It is well-studied [14], [26] that the above hints
can greatly affect the parallel I/O performance, and hence have
been chosen in our work. All the models described in §III are
implemented in Python using Hyperopt [27] (a Python library
for hyperparameter optimization). For pre-processing in predic-
tion based model, we applied MinMaxScaler transformation to
scale each input and output between 0 and 1 before training
and applied the inverse transformation after prediction so that
evaluation metrics are computed in the original scale. Tree-
structured Parzen estimator (TPE) is used as the optimization
algorithm in Hyperopt. The TPE approach models P (x|y)
and P (y) where x represents parameters and y the associated
score (I/O bandwidth). Thus using TPE as search algorithm
and bias defined on sample space, Hyperopt finds the best
set of parameters. In the beginning of first iteration, each
value is initialized by TPE on the basis of bias defined on
search space. In our case, for each hint we have given uniform
distribution between min and max values as bias. In ExAct,
for each configuration, 20 iterations are used to obtain the
best parameter values. Increase in number of iterations will
yield better set of parameters, closer to the optimum value.

23

We use environment variables (specific to system and MPI
implementation) to set the I/O hints.

In Predict (§IV-A), XGB is used with max depth=10,
n estimators=1000 and linear regressor. 30/70 train-test split
is done and results are averaged for 10 such random splits
to increase confidence in model. For each benchmark, two
models are trained – one for predicting read bandwidth and
the other for write bandwidth. We had 1136 data points for
S3D-IO, 414 data points for BT-IO, 658 for IOR and 1004
data points for GenericIO. These data points were generated
while running ExAct, and serve as the training and test data for
XGB. The input data includes runs of various configurations
over various MPI and Lustre parameters while obtaining ExAct
parameters. Each data point contains the I/O bandwidth, the
tuning parameters and the configuration on which it was run.
In PrAct, the Predict model is used as objective function and
results are obtained on unseen or new configurations. The
number of iterations in PrAct for model to converge is 100 for
each input. Time taken for training Predict is ∼ 11 seconds
(data-dependant). Training time for ExAct is 20 × runtime
because we run ExAct 20 times, and ExAct runs the application
every iteration. However, we only run for a small number of
time steps for each benchmark (e.g. 3 time steps for S3D-
IO). Training time for PrAct is ∼ 18 seconds, independent
of configuration. Thus, while on an average it takes ∼ 1000
seconds to obtain best parameters from ExAct for GenericIO,
it takes only ∼ 18 seconds for PrAct (44×) reduction.

B. Benchmarks

We describe below the I/O benchmarks and application I/O
kernels that we have used in our work.

Interleaved or Random I/O benchmark (IOR) [28], [29] is
an I/O benchmark developed at Lawrence Livermore National
Laboratory (LLNL). It is a highly configurable benchmark and
is one of the most widely used I/O benchmarks. The input
to IOR is transfer size and block size. We used MPIIO API.
We used “-e” (fsync) option to flush the cached pages to the
Lustre file system upon writes. The Lustre directives were set
with “-O” option and MPI-IO hints were passed using “-U”
option. We also experimented with and without file-per-process
option of IOR. We experimented with various transfer (data
per transfer) and block sizes (data per task).

S3D-IO [30] is an I/O kernel for the S3D combustion
application [31], developed at the Sandia National Laboratories.
It uses the PnetCDF library to perform parallel I/O. The input
configuration consists of 3D grid sizes and number of processes
in each dimension. We used non-blocking collective I/O.

GenericIO [32] is the I/O kernel for the HACC cosmology
simulation code, developed at the Argonne National Laboratory.
It consists of 2 inputs – number of particles and seed. Each
particle is defined by nine variables, such as the coordinates
and physical properties. It is a data-intensive application, our
experiments output data of the order of several TBs.

BT-IO [33] benchmarks the performance of PnetCDF and
MPI-IO for the I/O pattern used by the BT code of NAS Parallel
Benchmarks. It uses a block-tridiagonal partitioning pattern on

a 3D array across a square number of MPI processes. The input
consists of 3D grid sizes. We used PnetCDF non-blocking I/O.

C. System setup

We used two systems – HPC2010 and Cori. HPC2010 [34] is
a 368-node supercomputer at the Indian Institute of Technology
Kanpur. Each node is an Intel Xeon (Nehalem) 8-core processor
with 48 GB RAM. It has a peak performance of 34.5 TFlops.
The nodes are connected by Infiniband switches in a fat-tree
topology. It has a Lustre file system (100 TB storage) with 24
OSTs. We used a maximum of 128 processes. Cori [16] is a
CrayXC40 supercomputer at the Lawrence Berkeley National
Laboratory with 2388 Intel Xeon Haswell processor nodes
and 9688 Intel Knights Landing processor nodes. We ran all
our experiments on upto 16 nodes of the Haswell partition.
Each Haswell node has 32 cores. Cori has a Lustre file system
(30 PB storage) with 248 OSTs. We used a maximum of 512
processes. We ran our experiments using the Intel MPI on
HPC2010 and Cray MPI on Cori. On both systems, the default
stripe count is 1 and the default stripe size is 1 MB.

D. Results

In this section, we show the results from ExAct, Predict and
PrAct from all our benchmarks and on the two systems. The
experiments have been repeated 5 times, and average values
have been plotted.

1) Execution-based Auto-tuning (ExAct): We obtained the
read and write bandwidths by running ExAct (20 iterations) on
all four benchmarks for various configurations. The results are
obtained by running the benchmarks with the best parameters
obtained from the model. We compare this with the I/O
bandwidths obtained from running the benchmarks with default
parameters on the system.

Figure 2 shows the results for S3D-IO on HPC2010. The y-
axis shows the default and ExAct model read-write bandwidths
(y-axis ranges are different for each plot). The figure shows
strong scaling results for 10 different data sizes on 16 – 128
processes. We achieved a maximum of 6× and 4× improvement
in read and write bandwidths over the default across all the
40 configurations shown in the figure. Note that we have
experimented with different skewed data sizes and achieved a
good performance improvement. For e.g., we obtained a read
bandwidth of 710 MBps as compared to the default 115 MBps
for the configuration 100 × 200 × 400 (16 processes). Also,
note that for higher process count, ExAct is able to achieve
higher performance improvements for the same data size. This
is because the effect of using more OSTs (as auto-tuned by
ExAct) is more pronounced at higher node counts, since more
nodes/tasks are able to drive the concurrency achieved with
more OSTs. For the input configuration of 200×400×400 on
128 processes, the default parameters resulted in I/O time of
19.13 seconds, whereas with ExAct parameters, the I/O time
was 12.65 seconds. This was due to disabling aggregation, and
using stripe count=7 by ExAct as compared to default of 1.

Figure 3 shows strong scaling and data scaling for IOR on
HPC2010. This was without using the file per process option

24

Fig. 2: Default vs. best bandwidth from ExAct for various configurations of S3D-IO on 16, 32, 64 and 128 processes of HPC2010. X-ticks of each plot (of the form x-y-z) represents
the 3D grid size of the input data.

and with the fsync option. We achieved 87% and 20% average
improvement in read and write bandwidths across all runs. The
reason for this huge improvement is that in each iteration, our
model tries to minimize loss, which in our case is the execution
time of the application. It does so by selecting better parameters
based on the history (see §III). For instance, the model read
bandwidth for 28 nodes (Figure 3(a)) is 1708.16 MBps as
compared to 360.59 MBps in the default case. In this case, the
block size (i.e. amount of data written per task) is 200 MB,
resulting in about 43 GB data. The improvement is because
our model selects better parameters based on active learning.
For example, it selected a stripe size of 20 MB, as compared to
the default of 1 MB, and a stripe count of 16 as compared to
default of 1 in this case. We show speedups in Figure 3(b) for
varying transfer sizes (100 MB block size). We also observe
higher improvement in read bandwidth than write bandwidth as
compared to default I/O bandwidths. The application reads and
writes during each run, and the data sizes for reads/writes are
the same. Increase in read bandwidth minimizes loss, giving
positive feedback to the model to change parameters. However,
since our loss function is the overall runtime of the application,
the model tries to optimize for that, instead of minimizing read
and write times separately.

Figure 4 shows strong scaling results for GenericIO. The
x-axis shows various data sizes per task (MB), and the y-axis
shows I/O bandwidths (MBps). The four plots show results on
16, 32, 64, 112 processes on HPC2010. The number of particles
(shown in x-axis) per task varied from 26 million – 1 billion.
The maximum improvement in read and write bandwidths are
5.24× and 5.99× respectively. In contrast to IOR and S3D-IO,

improvement of write bandwidth over default is greater than
read bandwidth. Also note that ExAct is able to auto-tune
the MPI-IO parameters and Lustre parameters such that write
performance of large data sizes (37.9 TB corresponding to 1
billion particles) improved by 3×. Further, for higher number
of cores and data size, performance of GenericIO with ExAct
I/O parameters is better. For example, ExAct parameters give
1.6× and 2.4× better results on average than the default for 28
nodes (112 processes). This shows that the default parameters
are not at all suitable for large-scale I/O. A model like ours
can help the application developers in automatically tuning the
I/O parameters through active learning in a very few iterations
with few sample points, as compared to traditional machine
learning or other approaches.

Figure 5 shows strong scaling results for BT-IO on 16 and
64 cores respectively (BT-IO requires a perfect square number
of processes). For large number of cores and large data size,
ratio of ExAct to default bandwidth increases, suggesting more
improvements for large number of cores. We achieved an
average improvement of 1.3× and 2.1× for read and write
bandwidths. Note that, in this case we achieved a higher
performance improvement for writes. This is because BT-IO
uses a block tri-diagonal write pattern [35]. In this case, the
writes are not from contiguous blocks, and therefore tuning
the I/O parameters is very important for BT-IO. The input
configuration 500× 500× 500 corresponds to 4.8 TB of I/O
data. For such high data sizes, we have achieved 3.2× speedup
because of a robust model. Figure 6 shows read and write
bandwidths of S3D-IO in Cori, averaged over 5 runs. We used
a maximum of 56 OSTs on 16 nodes of Cori. Therefore, we

25

(a) IOR I/O bandwidths for varying node counts.

(b) IOR I/O bandwidths for varying transfer sizes.

Fig. 3: Default vs. ExAct I/O bandwidths using IOR on HPC2010. (a) Strong scaling on
16 – 128 processes (b) Data scaling on 64 cores with 100 MB block size.

set the range of stripe count to 56 on Cori for ExAct. Similar
to HPC2010, the read bandwidth improvements are higher. On
Cori, which uses Cray MPI, the number of cb nodes is also
set to the stripe count. The default stripe size is 1 MB and
stripe count is 1. The default collective buffer size is 16 MB.
Whereas, our model runs S3D-IO on a given number of nodes,
selects the I/O parameters based on the previous runs that gave
best results, and runs again until it finds the best configuration.
For example, the average default read and write bandwidths
are 13.8 and 3.7 GBps, whereas, with the ExAct parameters
(average stripe size=21 MB, average stripe count=52 from 5
runs), the average read and write bandwidths were 18.5 and
4.3 GBps. We also ran IOR on Cori with ExAct parameters
and the default for varying transfer sizes (128 KB – 8 MB)
for a block size of 200 MB. This was using file per process
and collective I/O. On an average, we observed about 18%,
11%, 22%, 14%, 45%, 40%, 45% performance improvements
in reads for transfer sizes of 128 KB, 256 KB, 512 KB, 1
MB, 2 MB, 4 MB and 8 MB respectively. We note higher
improvements for larger transfer sizes, because tuning the
default parameters matters more for large data transfers.

Figure 7(a) shows how the density of the sample space
varies before and after running the model. We can see that our
hypothesis in all cases of stripe size was uniform distribution
between a range. The Bayesian optimization model tuned

the density to predict better stripe size. For each input, the
optimum values lie in different ranges so uniform distribution
as bias on sample space is the best choice. We also note that

Benchmark Read (Avg) Write (Avg) Read (Max) Write (Max)
S3D-IO 1.97X 2.21X 11.14X 4.03X

IOR 2.1X 1.0X 4.73X 2.23X
BT-IO 1.07X 1.76X 2.93X 4.86X

GenericIO 1.44X 1.51X 3.04X 3.06X
TABLE I: Overall % improvement of ExAct Model on HPC2010

in trial run, stripe count in Figure 7(b) which is given a prior
of log-uniform probability distribution flattens somewhere and
peaks elsewhere. It shows that even if our initial hypothesis
of the sample space is wrong, the model will eventually
find the optimal parameters. ExAct model improvements for
each benchmark on HPC2010 are summarized in Table I.
Columns 2 and 4 show the average and maximum read
bandwidth improvements, columns 3 and 5 show the average
and maximum write bandwidth improvements with ExAct.

2) Performance Prediction (Predict): In this section, we
show results for our performance prediction model, Predict.
We used the data collected while running ExAct for all the
benchmarks as the training and test data. Data can also be
collected from the production run logs of the applications.
We trained two models – one for predicting read bandwidth
and other for predicting write bandwidth, given the value of
input configuration and hints. This is because ExAct model
outputs different read and write parameters (e.g. romio ds read
and romio ds write). We next experimented with extreme
gradient boosting (XGB) for regression. We ran XGBoost [36]
regression model for all the benchmarks for 30/70 train/test
split to predict the read and write bandwidths. The model
took around 20 seconds to train for each application. Figure 8
shows performance of XGB predictions (Predict) for all four
benchmarks on HPC2010. The results are average of 10-fold
cross validations (10 different sets of train/test splits). For
BT-IO and S3D-IO, the plots are well-centered around the
black dotted line (ideal case with 100% accuracy). For S3D-
IO write bandwidth, we observed high R2 scores for even
10/90 train/test split. The R2 scores for 50/50, 30/70, 20/80,
5/95 train/test splits are 0.87, 0.85, 0.85 and 0.62 respectively.
Thus, even for small sample data set, the XGB model gives
good result. This is because XGB has a novel tree learning
algorithm to handle training point weights efficiently. Note that
typical ML models train/test split is 80/20. Our model is able
to achieve good predictions because of good sample data (from
ExAct) and appropriate hyperparameter tuning of XGB [7].

Table II shows the median absolute percentage error
(MdAPE) and R2 score for XGB predictions, across all
configurations for four benchmarks on HPC2010 and one
benchmark on Cori (last row) with 10-fold cross validation to
obtain robust results. Coefficient of determination (R2) is used
to assess the goodness of model fit. It has a maximum value of
1 which indicates model perfectly fits the data. Higher the R2,
better the model fits the data. We observe less than 20% error
for most cases, except read predictions for IOR. The R2 score
for IOR on HPC2010 is really poor. A possible reason for low

26

Fig. 4: Default vs. best bandwidth using ExAct on GenericIO for various particle sizes on 2, 4, 16, 28 nodes of HPC2010 (8 processes per node). Y-axis represents I/O bandwidth
in MBps and x-axis represents number of particles (in millions).

Fig. 5: Default vs. best bandwidth from ExAct for BT-IO on HPC2010 for various configurations. Each group of 4 bar charts represent read and write default and ExAct bandwidths.
X-ticks for each plot represent the 3D grid dimensions. The top and bottom plots are for 2 and 8 nodes respectively (8 cores per node).

Fig. 6: Weak scaling results for S3D-IO on 2 – 16 nodes of Cori (32 processes per node)

R2 score of read and write for IOR can be non-diverse data
collected while running ExAct (which we used as training set
for Predict). A better training set can improve the result. We
plan to investigate this in future.

Benchmark MdAPE (%) R2

Read Write Read Write
S3D-IO 23.72 10.13 0.50 0.88
BT-IO 21.24 19.23 0.45 0.79
IOR 30.58 10.25 -0.20 0.47

GenericIO 12.22 13.42 0.42 0.24
S3D-IO 8.01 7.25 0.90 0.91

TABLE II: Predict performance on HPC2010 (rows 1 – 4) and Cori (last row)

3) Prediction-based Auto-tuning (PrAct): The read and
write bandwidth prediction model (using XGB) is used to
predict read and write bandwidths in PrAct (§IV). For each
input configuration, PrAct runs 100 iterations to converge. The
output are the values of the I/O hints that may yield high I/O
bandwidths for the system on which Predict was trained. With
these hints, we run the application code to get PrAct results.
The results are shown in Fig9(a) and Fig9(b) for S3D-IO and

27

(a) Probability density of stripe size.

(b) Probability density of stripe count.

Fig. 7: Training distributions for ExAct. Red and blue curves show density distribution
before and after training of model respectively. Note: The curves are plotted by sampling.

(a) IOR (b) BT-IO

(c) S3D-IO (d) GenericIO

Fig. 8: Scatter plots of XGB-predicted values vs. measured values of write bandwidths
for IOR, BT-IO, S3D-IO and GenericIO on HPC2010 for 30/70 split of train/test data.
The ideal graph should be dashed black line; the actual values are denoted by blue dots.

BT-IO. The PrAct output is compared with the runs using
default parameters. The read and write bandwidths (dark green
and dark blue in the figures) are obtained by executing with
hints obtained by running PrAct with predicted bandwidths
(from Predict) as objective function. Separate set of hints were
used for read and write bandwidths as recommended by PrAct.

We observe that BT-IO I/O bandwidths are higher than the
default with this model over various configurations (x-axis).
PrAct achieved a maximum of 1.6× and 1.2× performance
improvement in reads and writes in S3D-IO, and a maximum
of 1.7× and 2.5× performance improvement in reads and
writes in BT-IO. We ran both the benchmarks over various
configurations which were not present in our training or test
data set. We observe that PrAct is able to perform well even

for these new configurations with the predictions. Note that we
ran the experiments for a few time steps. However, production
runs are long-running and our models can help in reducing the
I/O cost by a few hours, when ran in production mode.

(a) S3D-IO weak scaling on unseen configurations.

(b) BT-IO with unseen configurations.

Fig. 9: PrAct results for S3D-IO and BT-IO.

We observed degradation in read bandwidths in case of
IOR, especially at high node counts. This is expected as the
R2 scores were low (refer Table II) for IOR, which shows
prediction model does not perform well. This is perhaps due
to high variability for IOR runs as well as insufficient training
data for learning. Average training time of PrAct is 18 seconds
whereas average training time for ExAct is 800 seconds which
is lower than the existing models. Note that PrAct reduces the
training time significantly because the active learning model in
PrAct uses the predicted values rather than the actual runtimes
of the application. We get good predictions for many of the
configurations, and therefore PrAct is able to find the best
parameters for new configurations as well.

VI. CONCLUSIONS AND FUTURE WORK

We presented two active learning-based auto-tuning ap-
proaches, ExAct and PrAct, to tune the MPI-IO and Lustre
parameters. The only system-specific input to the model is the
range for stripe count, since the maximum number of OSTs vary
per system. We also presented a performance model to predict
the I/O bandwidths. All our models are application-agnostic
and can be trained for any benchmark with negligible effort. We
have demonstrated upto 11× improvements in read and write
bandwidths with both ExAct and PrAct for a few important I/O
benchmarks and application kernels on two supercomputers (up
to 128 cores on HPC2010 and 1024 cores on Cori). Execution-
based active learning model, ExAct, obtains a speedup of 200%

28

on an average for various benchmarks in just 20 iterations.
ExAct runs the application and learns, whereas PrAct uses
predicted values from Predict to learn. Thereby, the training
time of PrAct to find best parameters is drastically reduced
from few hours (application-dependent) for ExAct to only 20
seconds on average. This is a tremendous improvement in
training time over past models for auto-tuning. ExAct is able
to improve write performance of large data sizes (1 billion
particles in GenericIO) by 3×. Moreover, ExAct achieves an
average bandwidth improvement of 2.1× for non-contiguous
writes in BT-IO. Thus, we demonstrate that active learning can
indeed be useful for auto-tuning in HPC.

Predict model uses XGBoost, and obtains less than 20%
median prediction errors for most cases, even with 30/70
train/test split where results are averaged by running over
10 different set of train/test splits. Since the data set for Predict
is obtained from the ExAct runs, the input training data is
at times insufficient for the model to learn in case of few
applications. This can be further improved by feeding more
input data to Predict, which we plan to experiment in future.
The loss function is the overall runtime of the application, the
model tries to minimize loss for overall execution, thereby
tuning parameters for both read and write simultaneously. In
some cases the read bandwidth improvements were better, and
in some cases the write bandwidth improvements were better.
In future, we plan to tune reads and writes separately.

VII. ACKNOWLEDGMENTS

We thank the High Performance Computing Facility of
the Indian Institute of Technology Kanpur funded by the
Department of Science and Technology and IIT Kanpur. We
also thank the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of
Science User Facility operated under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao, “A Multiplatform Study of I/O Behavior on Petascale
Supercomputers,” in Proceedings of the International Symposium on
High-Performance Parallel and Distributed Computing, 2015, pp. 33–44.

[2] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
Characterization of petascale I/O workloads,” in 2009 IEEE International
Conference on Cluster Computing and Workshops, 2009.

[3] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,
M. Snir et al., “Taming parallel I/O complexity with auto-tuning,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 68.

[4] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving
parallel I/O autotuning with performance modeling,” in Proceedings of
the 23rd International Symposium on High-performance Parallel and
Distributed Computing, 2014, pp. 253–256.

[5] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing I/O performance
of HPC applications with autotuning,” TOPC, vol. 5, no. 4, pp. 15:1–
15:27, 2019.

[6] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,
B. Norris, and R. Vuduc, “Autotuning in High-Performance Computing
Applications,” Proceedings of the IEEE, vol. 106, no. 11, 2018.

[7] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran,
“Benchmarking Machine Learning Methods for Performance Modeling
of Scientific Applications,” in 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), 2018, pp. 33–44.

[8] M. Howison, , Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf, “Tuning
HDF5 for Lustre file systems,” 2010.

[9] R. McLay, D. James, S. Liu, J. Cazes, and W. Barth, “A user-friendly
approach for tuning parallel file operations,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014, pp. 229–236.

[10] E. K. Lee and R. H. Katz, “An analytic performance model of disk
arrays,” in ACM SIGMETRICS Performance Evaluation Review, vol. 21,
no. 1. ACM, 1993, pp. 98–109.

[11] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “Cost-intelligent application-
specific data layout optimization for parallel file systems,” Cluster
computing, vol. 16, no. 2, pp. 285–298, 2013.

[12] K. J. Barker, K. Davis, and D. J. Kerbyson, “Performance modeling in
action: Performance prediction of a Cray XT4 system during upgrade,”
in International Symposium on Parallel Distributed Processing, 2009.

[13] M. Matheny, S. Herbein, N. Podhorszki, S. Klasky, and M. Taufer,
“Using surrogate-based modeling to predict optimal I/O parameters of
applications at the extreme scale,” in 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), 2014, pp. 568–575.

[14] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross, and
P. Hovland, “Collective I/O tuning using analytical and machine learning
models,” in IEEE International Conference on Cluster Computing, 2015.

[15] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and
S. Oral, “Predicting output performance of a petascale supercomputer,” in
Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2017, pp. 181–192.

[16] “Cori,” http://www.nersc.gov/users/computational-systems/cori.
[17] “Lustre,” http://www.lustre.org/.
[18] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical

optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3–35, 2001.

[19] R. Vuduc, J. W. Demmel, and J. A. Bilmes, “Statistical models for
automatic performance tuning,” in Proceedings of the International
Conference on Computational Science, ser. LNCS, vol. 2073. San
Francisco, CA: Springer, May 2001, pp. 117–126.

[20] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
Optimization Algorithm,” in Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation - Volume 1, 1999, pp. 525–532.

[21] P. W. Koch, B. Wujek, O. Golovidov, and S. Gardner, “Automated
Hyperparameter Tuning for Effective Machine Learning,” 2017.

[22] Automated Hyperparameters tuning. [Online]. Available: https://www.
kaggle.com/willkoehrsen/automated-model-tuning

[23] P. I. Frazier, “A Tutorial on Bayesian Optimization,” arXiv e-prints, p.
arXiv:1807.02811, Jul 2018.

[24] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[25] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” CoRR, vol. abs/1603.02754, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02754

[26] G. Congiu, S. Narasimhamurthy, T. Sub, and A. Brinkmann, “Improving
Collective I/O Performance Using Non-volatile Memory Devices,” in
IEEE International Conference on Cluster Computing, 2016.

[27] Hyperopt. [Online]. Available: https://github.com/hyperopt/hyperopt/
wiki/FMin

[28] IOR Code. [Online]. Available: https://github.com/hpc/ior
[29] “IOR Documentation,” https://buildmedia.readthedocs.org/media/pdf/ior/

latest/ior.pdf.
[30] “S3D-IO code,” https://github.com/wkliao/S3D-IO.
[31] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes,

S. Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey, N. Podhorszki
et al., “Terascale direct numerical simulations of turbulent combustion
using S3D,” Computational Science & Discovery, vol. 2, no. 1, 2009.

[32] “Genericio,” https://trac.alcf.anl.gov/projects/genericio.
[33] W.-k. Liao, “Design and evaluation of MPI file domain partitioning

methods under extent-based file locking protocol,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 2, pp. 260–272, 2011.

[34] HPC2010. [Online]. Available: https://www.hpc.iitk.ac.in
[35] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain

partitioning methods for collective I/O based on underlying parallel
file system locking protocols,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008.

[36] Xgboost. [Online]. Available: https://xgboost.readthedocs.io/en/latest/

29

http://www.nersc.gov/users/computational-systems/cori
http://www.lustre.org/
https://www.kaggle.com/willkoehrsen/automated-model-tuning
https://www.kaggle.com/willkoehrsen/automated-model-tuning
http://arxiv.org/abs/1603.02754
https://github.com/hyperopt/hyperopt/wiki/FMin
https://github.com/hyperopt/hyperopt/wiki/FMin
https://github.com/hpc/ior
https://buildmedia.readthedocs.org/media/pdf/ior/latest/ior.pdf
https://buildmedia.readthedocs.org/media/pdf/ior/latest/ior.pdf
https://github.com/wkliao/S3D-IO
https://trac.alcf.anl.gov/projects/genericio
https://www.hpc.iitk.ac.in
https://xgboost.readthedocs.io/en/latest/

